
CSC 2224: Parallel Computer
Architecture and Programming
GPU Architecture: Introduction

Prof. Gennady Pekhimenko
University of Toronto

Fall 2022

The content of this lecture is adapted from the slides of Kayvon Fatahalian (Stanford), Olivier
Giroux and Luke Durant (Nvidia), Tor Aamodt (UBC) and Edited by: Serina Tan

Presentation Schedule

• Aim at 30-35mins + questions
• Everyone is expected to participate

2

https://www.youtube.com/watch?v=-P28LKWTzrI

https://www.youtube.com/watch?v=-P28LKWTzrI

• GPU = Graphics Processing Unit
– Accelerator for raster based graphics (OpenGL, DirectX)
– Highly programmable (Turing complete)
– Commodity hardware
– 100’s of ALUs; 10’s of 1000s of concurrent threads

What is a GPU?

4

NVIDIA Volta: V100 NVIDIA Ampere: A100 NVIDIA Hopper: H100

The GPU is Ubiquitous

5 [APU13 keynote]

+

“Early” GPU History
– 1981: IBM PC Monochrome Display Adapter (2D)
– 1996: 3D graphics (e.g., 3dfx Voodoo)
– 1999: register combiner (NVIDIA GeForce 256)
– 2001: programmable shaders (NVIDIA GeForce 3)
– 2002: floating-point (ATI Radeon 9700)
– 2005: unified shaders (ATI R520 in Xbox 360)
– 2006: compute (NVIDIA GeForce 8800)

6

Why use a GPU for computing?
• GPU uses larger fraction of silicon for computation than CPU.

• At peak performance GPU uses order of magnitude less energy per
operation than CPU.

7

CPU
2nJ/op

GPU
200pJ/op

Rewrite
Application

Order of Magnitude
More Energy

Efficient
However….

Application must perform
well

Agenda
• Three key ideas that make GPUs run fast

• GPU memory hierarchy

• Closer look at a modern GPU architecture (Nvidia’s Volta)

• Memory: higher bandwidth, larger capacity

• Compute: application-specific hardware

8

Why GPUs Run Fast?
• Three key ideas behind how modern GPU processing cores run

code

• Knowing these concepts will help you:
1. Understand GPU core designs
2. Optimize performance of your parallel programs
3. Gain intuition about what workloads might benefit from such

a parallel architecture

9

Example Program: Vector Multiply-
Add

• Compute v = a ∙ b + c (a, b, c and v are vectors with a length of
N)

1
0

a

b

c

v

𝘅

＋
=

void mul_add (int N, float* a, float* b, float* c, float* v) {
for (int i = 0; i < N; i++) {

v[i] = a[i] * b[i] + c[i]
}

}

Single-core CPU Execution

1
1

mov R1, 0
START:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3,

R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N

Single-core CPU Execution

1
2

… Instruction
Flow

madd stalled,
jump to the next

independent instruction

Can also be executed
out-of-order

through register renaming

mov R1, 0
START:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3,

R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 <

NSTART:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3,

R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 <

N

Single-core CPU Execution

1
3

… Instruction
Flow

mov R1, 0
START:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3,

R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 <

NSTART:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3,

R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 <

N

But what if we tell the hardware
these two blocks can be executed

in parallel to begin with?

Slimming Down

1
4

Idea #1:
Use increasing transistor
count to add more cores to
the processor

… rather than use transistors to
increase sophistication of
processor logic that accelerates a
single instruction stream (e.g.,
out-of-order and speculative
operations)

Two cores (Two Elements in Parallel)

1
5

START:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3,

R4
st R5, v[R1]
add R1, R1, 1

START:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3,

R4
st R5, v[R1]
add R1, R1, 1

Element
x

Result x

Element
y

Result y

Sixteen Cores

1
6

16 cores = 16 simultaneous instruction streams

But wait… Different elements in the vector

are running the exact same instructions!

START:ld R2, a[R1]

ld R3, b[R1]

ld R4, c[R1]

madd R5, R2, R3, R4

st R5, v[R1]

add R1, R1, 1

Instruction Stream Sharing

1
7

Idea #2:
Amortize cost/complexity of managing an
instruction
stream across many ALUs

SIMD processing!

128 Elements in Parallel

1
8

16 cores = 16 simultaneous instruction streams16 cores 𝘅 8 ALUs/core = 128 ALUs

What about Branches?

1
9

<unconditional shader code>
if (x > 0) {

y = pow(x, exp);
y *= Ks;
refl = y + Ka;

} else {
x = 0;
refl = Ka;

}
<resume unconditional shader code>

<unconditional shader code>
if (x > 0) {

y = pow(x, exp);
y *= Ks;
refl = y + Ka;

} else {
x = 0;
refl = Ka;

}
<resume unconditional shader code>

What about Branches?

2
0

<unconditional shader code>
if (x > 0) {

y = pow(x, exp);
y *= Ks;
refl = y + Ka;

} else {
x = 0;
refl = Ka;

}
<resume unconditional shader code>

What about Branches?

2
1

Not all ALUs do useful work!
Worst case: 1/8 peak performance

SIMD Execution on Modern
GPUs

• “Implicit SIMD”
• Compiler generates a scalar binary (scalar as opposed to vector instructions)
• But N instances of the program are *always running* together on the processor

i.e., execute(my_function, N) // execute my_function N times
• Hardware (not compiler) is responsible for simultaneously executing the same instruction

on different data in SIMD ALUs
• SIMD width in practice

• 32 on NVIDIA GPUs (a warp of threads) and 64 on AMD GPUs (wavefront)
• Divergence can be a big issue (poorly written code might execute at 1/32 the peak

capability of the machine!)

2
3

Dealing with Stalls on In-order
Cores

• Stalls occur when a core cannot run the next instruction because of a
dependency on a previous long-latency operation

• We’ve removed fancy logic that helps avoid stalls

• No more out-of-order execution to exploit instruction-level parallelism
(ILP)

• Traditional cache doesn’t always help since a lot of workloads are
streaming data

• But, we have a LOT of parallel work…

2
4

Idea #3: Interleave processing of many warps on a
single core to avoid stalls caused by high-latency

operations

Hiding Stalls

2
5

Element 1…8 Element 9…16
Element 17…24

Element 25…32
1 2 3 4

Time
(clock cycles)

Hiding Stalls

2
6

Time
(clock cycles) Element 1…8 Element 9…16

Element 17…24

Element 25…32
1 2 3 4

Runnable

Hiding Stalls

2
7

Time
(clock cycles) Element 1…8 Element 9…16

Element 17…24

Element 25…32
1 2 3 4

Runnable

Runnable

Runnable

Runnable

Done!

Done!

Done!

Done!

Throughput Computing Trade-off

2
8

Time
(clock cycles) Element 1…8 Element 9…16

Element 17…24

Element 25…32
1 2 3 4

Runnable

Done!
Key idea of throughput-oriented systems:
Potentially increase runtime of one group, in order
to increase throughput of overall system running
multiple groups.

During this time, this group is runnable, but it is not being
executed by the processor. (The core is running some other
group.)

Storing Execution Contexts
• Consider on-chip storage of execution contexts a finite resource
• Resource consumption of each thread group is program-dependent

2
9

Execution Context Storage

Four Large Contexts (Low Latency
Hiding)

3
0

Eighteen Small Contexts (High Latency
Hiding)

3
1

Summary: Three Key Ideas
1. Use many “slimmed down cores” to run in parallel
2. Pack cores full of ALUs (by sharing instruction stream on

multiple data)
3. Avoid latency stalls by interleaving execution of many groups

of threads
• When one group stalls, work on another group

3
2

CPU v.s. GPU Memory
Hierarchies

3
3

CPU:
Big caches, few threads per core, modest memory BW
Rely mainly on caches and prefetching

NVIDIA GTX 1080
(Pascal)

GPU:
Small caches, many threads, huge memory BW
Rely heavily on multi-threading for performance

GD
DR5

Thought Experiment
• Consider element-wise multiplication of two vectors a and b
• Assume vectors contain millions of elements

• Load input a[i]
• Load input b[i]
• Compute a[i] 𝘅 b[i]
• Store result into v[i]

• Three memory operations (12 bytes) for every MUL
• NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz)
• Need ~45 TB/sec of bandwidth to keep functional units busy (only have 320

GB/sec)

3
4

a

b
v

𝘅
=

<1% GPU efficiency… but 4.2x faster than eight-core CPU in lab!
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus will

exhibit ~3% efficiency on this computation)

Bandwidth limited!
If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for
application developers on throughput-optimized systems.

Bandwidth is a Critical
Resource

Performant parallel programs will:
• Organize computation to fetch data from memory less often

• Reuse data previously loaded by the same thread
• Share data across threads through scratchpad (inter-thread cooperation)
• Access contiguous memory within the same warp (hardware managed

memory coalescing)
• Request data less often (instead, do more arithmetic: it’s “free”)

• Useful term: “arithmetic intensity” — ratio of math operations to data access
operations in an instruction stream

• Main point: programs must have high arithmetic intensity to utilize modern
processors efficiently

3
6

Memory Spaces in GPU

3
7

SM
1

…

SM
nSM 0

Compute Cores

Register File
(fast)

Shared Memory
(med)

Device Memory
(slow++)

Per thread Per thread block

L1 Cache (Slow)

All resident threads

L2 Cache (slow+)

On-chip:
- Register file

- Usage determined by compiler
- Spills go to local memory

- Shared memory, i.e. scratchpad
- Programmer managed
- Bank conflicts

- L1 cache

Off-chip:
- L2 cache

- Bandwidth filter for DRAM rather than
reducing latency as in CPUs

- Device memory (DRAM)
- Several spaces: global memory,

texture memory, local memory
- Different spaces have different caching policies

21B
transistor

s 815
mm2

80 SM
5120 CUDA

Cores
640 Tensor

Cores16/32 GB
HBM2

900 GB/s
HBM2

300 GB/s
NVLink

*full GV100 chip contains 84
SMs

Modern GPU Architecture (Volta 2017)

38

Review #6
GPUs and the Future of Parallel Computing
Steve Keckler et al., IEEE Micro 2011

Due Oct. 26th

39

https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

CSC 2224: Parallel Computer
Architecture and Programming
GPU Architecture: Introduction

Prof. Gennady Pekhimenko
University of Toronto

Fall 2022

The content of this lecture is adapted from the slides of Kayvon Fatahalian (Stanford), Olivier
Giroux and Luke Durant (Nvidia), Tor Aamodt (UBC) and Edited by: Serina Tan

CSC 2224: Parallel Computer
Architecture and Programming

GPU Programming

Prof. Gennady Pekhimenko
University of Toronto

Fall 2022

The content of this lecture is adapted from the slides of Kayvon Fatahalian (Stanford), Olivier
Giroux and Luke Durant (Nvidia), Tor Aamodt (UBC) and Edited by: Serina Tan

Accelerated Computing

GPU Teaching Kit

Memory Allocation and Data
Movement API Functions

Objective
– To learn the basic API functions in CUDA host code

– Device Memory Allocation
– Host-Device Data Transfer

A[0]vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

44

Vector Addition – Traditional C Code
// Compute vector sum C = A + B
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
 int i;
 for (i = 0; i<n; i++) h_C[i] = h_A[i] + h_B[i];
}

int main()
{
 // Memory allocation for h_A, h_B, and h_C

 // I/O to read h_A and h_B, N elements
 …

 vecAdd(h_A, h_B, h_C, N);
}

45

CPU

Host Memory

GPU

Device Memory

Part 1

Part 3

Heterogeneous Computing vecAdd CUDA Host Code

#include <cuda.h>
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
 int size = n* sizeof(float);
 float *d_A, *d_B, *d_C;
 // Part 1
 // Allocate device memory for A, B, and C
 // copy A and B to device memory

 // Part 2
 // Kernel launch code – the device performs the actual vector addition

 // Part 3
 // copy C from the device memory

 // Free device vectors
}

46

Partial Overview of CUDA Memories
– Device code can:

– R/W per-thread registers
– R/W all-shared global memory

– Host code can
– Transfer data to/from per grid

global memory

47

We will cover more memory types
and more sophisticated memory

models later.

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

CUDA Device Memory Management API functions

– cudaMalloc()
– Allocates an object in the device global

memory
– Two parameters

– Address of a pointer to the allocated
object

– Size of allocated object in terms of
bytes

– cudaFree()
– Frees object from device global memory
– One parameter

– Pointer to freed object

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host-Device Data Transfer API functions

– cudaMemcpy()
– memory data transfer
– Requires four parameters

– Pointer to destination
– Pointer to source
– Number of bytes copied
– Type/Direction of transfer

– Transfer to device is
asynchronous

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Vector Addition Host Code
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
 int size = n * sizeof(float); float *d_A, *d_B, *d_C;

 cudaMalloc((void **) &d_A, size);
 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &d_B, size);
 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &d_C, size);

 // Kernel invocation code – to be shown later

 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
 cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);
}

50

In Practice, Check for API Errors in Host Code

cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {
 printf(“%s in %s at line %d\n”, cudaGetErrorString(err), __FILE__,
 __LINE__);
 exit(EXIT_FAILURE);
}

Accelerated Computing

GPU Teaching Kit

Threads and Kernel Functions

Objective

– To learn about CUDA threads, the main mechanism for exploiting of data parallelism

– Hierarchical thread organization
– Launching parallel execution
– Thread index to data index mapping

A[0]vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

54

CUDA Execution Model
Heterogeneous host (CPU) + device (GPU) application C program

– Serial parts in host C code
– Parallel parts in device SPMD kernel code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

A Thread as a Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

A thread is a “virtualized” or
“abstracted”
Von-Neumann Processor

Arrays of Parallel Threads

• A CUDA kernel is executed by a grid (array) of threads
– All threads in a grid run the same kernel code (Single Program Multiple Data)
– Each thread has indexes that it uses to compute memory addresses and make control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…

Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations on

shared/global memory addresses and barrier synchronization
– Threads in different blocks do not interact (except for atomic operations on global

memory addresses)

58

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…

…… …

blockIdx and threadIdx
• Each thread uses indices to decide what data to work on

– blockIdx: 1D, 2D, or 3D (CUDA 4.0)
– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

59

device
Grid Block (0,

0)

Block (1,
1)

Block (1,
0)

Block (0,
1)

Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

Accelerated Computing

GPU Teaching Kit

Kernel-Based SPMD Parallel Programming
CUDA Parallelism Model

Objective

– To learn the basic concepts involved in a simple CUDA kernel function
– Declaration
– Built-in variables
– Thread index to data index mapping

Example: Vector Addition Kernel

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
 int i = threadIdx.x+blockDim.x*blockIdx.x;
 if(i<n) C[i] = A[i] + B[i];
}

Device Code

Example: Vector Addition Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
 // d_A, d_B, d_C allocations and copies omitted
 // Run ceil(n/256.0) blocks of 256 threads each
 vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);
}

Host Code

4

The ceiling function makes sure that
there are enough threads to cover all
elements.

More on Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
 dim3 DimGrid((n-1)/256 + 1, 1, 1);
 dim3 DimBlock(256, 1, 1);
 vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);
}

64

Host Code

This is an equivalent way to express the
ceiling function.

__host__
void vecAdd(…)
{
 dim3 DimGrid(ceil(n/256.0),1,1);
 dim3 DimBlock(256,1,1);
vecAddKernel<<<DimGrid,DimBlock>>>(d_A,d_B,
d_C,n);
}

Kernel execution in a nutshell

65

GridBlk 0 Blk N-1
• • •

GPUM0
RAM

Mk• • •

__global__
void vecAddKernel(float *A,
 float *B, float *C, int n)
{
 int i = blockIdx.x * blockDim.x
 + threadIdx.x;

 if(i<n) C[i] = A[i]+B[i];
}

More on CUDA Function Declarations

− __global__ defines a kernel function
− Each “__” consists of two underscore characters
− A kernel function must return void

− __device__ and __host__ can be used together
− __host__ is optional if used alone

66

hosthost__host__ float HostFunc()
hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable from
the:

Executed on
the:

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time
Compiler

Heterogeneous Computing Platform with
CPUs, GPUs, etc.

Compiling A CUDA Program

Accelerated Computing

GPU Teaching Kit

Multidimensional Kernel Configuration

Objective
– To understand multidimensional Grids

– Multi-dimensional block and thread indices
– Mapping block/thread indices to data indices

2

host device

Kernel 1

Grid 1 Block
(0, 0)

Block
(1, 1)

Block
(1, 0)

Block
(0, 1)

Grid 2
Block (1,0)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

A Multi-Dimensional Grid Example

70

Note: Block index: (y, x), Thread index: (z, y, x)

1616 blocks

Processing a Picture with a 2D Grid

6276 picture

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

Row*Width+Col = 2*4+1 = 9
M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11 M13M12 M14 M15

M

Row-Major Layout in C/C++

Source Code of a PictureKernel

__global__ void PictureKernel(float* d_Pin, float* d_Pout,
int height, int width)

{

 // Calculate the row # of the d_Pin and d_Pout element
 int Row = blockIdx.y*blockDim.y + threadIdx.y;

 // Calculate the column # of the d_Pin and d_Pout element
 int Col = blockIdx.x*blockDim.x + threadIdx.x;

 // each thread computes one element of d_Pout if in range
 if ((Row < height) && (Col < width)) {
 d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];
 }
}

Scale every pixel value by 2.0

Host Code for Launching PictureKernel
// assume that the picture is mn,
// m pixels in y dimension and n pixels in x dimension
// input d_Pin has been allocated on and copied to device
// output d_Pout has been allocated on device
…
dim3 DimGrid((n-1)/16 + 1, (m-1)/16+1, 1);
dim3 DimBlock(16, 16, 1);
PictureKernel<<<DimGrid,DimBlock>>>(d_Pin, d_Pout, m, n);
…

Covering a 6276 Picture with 1616 Blocks

Not all threads in a Block will follow the same control flow path.

CSC 2224: Parallel Computer
Architecture and Programming
GPU Architecture: Introduction

Prof. Gennady Pekhimenko
University of Toronto

Fall 2022

The content of this lecture is adapted from the slides of Kayvon Fatahalian (Stanford), Olivier
Giroux and Luke Durant (Nvidia), Tor Aamodt (UBC) and Edited by: Serina Tan

	CSC 2224: Parallel Computer Architecture and Programming GPU A
	Presentation Schedule
	Slide 3
	What is a GPU?
	The GPU is Ubiquitous
	“Early” GPU History
	Why use a GPU for computing?
	Agenda
	Why GPUs Run Fast?
	Example Program: Vector Multiply-Add
	Single-core CPU Execution
	Single-core CPU Execution (2)
	Single-core CPU Execution (3)
	Slimming Down
	Two cores (Two Elements in Parallel)
	Sixteen Cores
	Instruction Stream Sharing
	128 Elements in Parallel
	What about Branches?
	What about Branches? (2)
	What about Branches? (3)
	SIMD Execution on Modern GPUs
	Dealing with Stalls on In-order Cores
	Hiding Stalls
	Hiding Stalls (2)
	Hiding Stalls (3)
	Throughput Computing Trade-off
	Storing Execution Contexts
	Four Large Contexts (Low Latency Hiding)
	Eighteen Small Contexts (High Latency Hiding)
	Summary: Three Key Ideas
	CPU v.s. GPU Memory Hierarchies
	Thought Experiment
	Bandwidth limited! If processors request data at too high a ra
	Bandwidth is a Critical Resource
	Memory Spaces in GPU
	Modern GPU Architecture (Volta 2017)
	Review #6
	CSC 2224: Parallel Computer Architecture and Programming GPU A (2)
	CSC 2224: Parallel Computer Architecture and Programming GPU P
	Memory Allocation and Data Movement API Functions
	Objective
	Data Parallelism - Vector Addition Example
	Vector Addition – Traditional C Code
	Heterogeneous Computing vecAdd CUDA Host Code
	Partial Overview of CUDA Memories
	CUDA Device Memory Management API functions
	Host-Device Data Transfer API functions
	Vector Addition Host Code
	In Practice, Check for API Errors in Host Code
	Threads and Kernel Functions
	Objective (2)
	Data Parallelism - Vector Addition Example (2)
	CUDA Execution Model
	A Thread as a Von-Neumann Processor
	Arrays of Parallel Threads
	Thread Blocks: Scalable Cooperation
	blockIdx and threadIdx
	CUDA Parallelism Model
	Objective (3)
	Example: Vector Addition Kernel
	Example: Vector Addition Kernel Launch (Host Code)
	More on Kernel Launch (Host Code)
	Kernel execution in a nutshell
	More on CUDA Function Declarations
	Compiling A CUDA Program
	Multidimensional Kernel Configuration
	Objective (4)
	A Multi-Dimensional Grid Example
	Processing a Picture with a 2D Grid
	Row-Major Layout in C/C++
	Source Code of a PictureKernel
	Host Code for Launching PictureKernel
	Covering a 6276 Picture with 1616 Blocks
	CSC 2224: Parallel Computer Architecture and Programming GPU A (3)

